From 1 - 10 / 94
  • Great Artesian Basin borehole porosity and permeability data from petroleum exploration wells within the GAB, quality checked by Jim Kellet (Geoscience Australia). Data is available in tabular format as a CSV file (comma delimited) and a Microsoft Excel 2010 file. This data set was produced for the Great Artesian Basin Water Resource Assessment and reported in: Section 5.5 'Hydrogeological properties' of Ransley TR and Smerdon BD (eds) (2012) Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. Section 5.3 'Hydrology' of Smerdon BD and Ransley TR (eds) (2012) Water resource assessment for the Central Eromanga region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. Section 5.3 'Hydrology' of Smerdon BD and Ransley TR (eds) (2012) Water resource assessment for the Surat region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia. This dataset and associated metadata can be obtained from www.ga.gov.au, using catalogue number 76562.

  • These data are one of a set of 13 that captures a consistent horizon and fault interpretation of approximately 35 000 km of regional, mostly deep, seismic reflection data recorded by AGSO along the north and northwestern continental margins of Australia between 1990 and 1994.

  • On behalf of Australia, and in support of the Malaysian accident investigation, the Australian Transport Safety Bureau (ATSB) was leading search operations for missing Malaysian airlines flight MH370 in the Southern Indian Ocean. Geoscience Australia provided advice, expertise and support to the ATSB to facilitate bathymetric surveys, which were undertaken to provide a detailed map of the sea floor topography to aid navigation during the underwater search. Prior to the bathymetric survey, very little was known about the sea floor in the MH370 search area, as few marine surveys have taken place in the area. Existing maps of the sea floor were coarse, having been derived from satellites and only providing a general indication of water depth. Before the underwater search for MH370 could begin, it was necessary to accurately map the sea floor to ensure that the search is undertaken safely and effectively. Bathymetry survey vessels spent months at sea, scanning the sea floor with multibeam sonar to gather detailed, high-resolution data. The multibeam backscatter data was acquired from Fugro Equator between June 2014 and February 2017 were processed by Geoscience Australia to 30 m resolution. This backscatter data was processed for the search area only, excluding all transit data and vessel turns. The data is presented as a yellow to bronze colour ramp, with high backscatter values in darker shades and overlain on a hillshade created from the 150 m bathymetry data. The hillshade was created with the parameters of point illumination azimuth at 45 degrees and altitude of 45 degrees.

  • Geoscience Australia (GA) conducted a marine survey (GA0345/GA0346/TAN1411) of the north-eastern Browse Basin (Caswell Sub-basin) between 9 October and 9 November 2014 to acquire seabed and shallow geological information to support an assessment of the CO2 storage potential of the basin. The survey, undertaken as part of the Department of Industry and Science's National CO2 Infrastructure Plan (NCIP), aimed to identify and characterise indicators of natural hydrocarbon or fluid seepage that may indicate compromised seal integrity in the region. The survey was conducted in three legs aboard the New Zealand research vessel RV Tangaroa, and included scientists and technical staff from GA, the NZ National Institute of Water and Atmospheric Research Ltd. (NIWA) and Fugro Survey Pty Ltd. Shipboard data (survey ID GA0345) collected included multibeam sonar bathymetry and backscatter over 12 areas (A1, A2, A3, A4, A6b, A7, A8, B1, C1, C2b, F1, M1) totalling 455 km2 in water depths ranging from 90 - 430 m, and 611 km of sub-bottom profile lines. Seabed samples were collected from 48 stations and included 99 Smith-McIntyre grabs and 41 piston cores. An Autonomous Underwater Vehicle (AUV) (survey ID GA0346) collected higher-resolution multibeam sonar bathymetry and backscatter data, totalling 7.7 km2, along with 71 line km of side scan sonar, underwater camera and sub-bottom profile data. Twenty two Remotely Operated Vehicle (ROV) missions collected 31 hours of underwater video, 657 still images, eight grabs and one core. This catalogue entry refers to grain size data and carbonate concentrations of the upper ~2cm of seabed sediment. Sediment samples were first wet sieved to determine the proportions of mud, sand and gravel as a percentage. By wet sieving fine particles are removed from the sand and gravel fractions, allowing an accurate measurement each component. The mud, sand, gravel percentages were also used to derive Folk sediment texture classifications for each sample (Folk, 1980). The grain size of the mud fraction (<63 m) was determined using a Mastersizer laser granulometer. Sediment > 63 um diameter were dried, and dry sieved at values between 4 and -4 phi corresponding to the Wentworth (1922) grain size boundaries between the major sediment classes. The samples were then submitted for measurement of carbonate content by mass using the carbonate digestion method described in Müller and Gastner (1971).

  • 3D data for the Geoscience Australia Record 2009/029 - 3D Map and Supporting Geophysical Studies in the North Queensland Region. Data consists of: boreholes; curie depth; dem; depth to basement; gravity; inversions grav mag voxets; magnetics; millungera basin; mt cross section surfaces; projection tm144; radiometrics image; regolith linework; seismic; seismic gravity models; smnd image; solid geology detailed; solid geology simplified; topography. <p>Related product:<a href="https://www.ga.gov.au/products/servlet/controller?event=GEOCAT_DETAILS&amp;catno=69581">3D map and supporting geophysical studies in the North Queensland region</a> - Geoscience Australia Record 2009/029.</p>

  • TimeScale Creator software including Geoscience Australia Datapack (Australian biozonation schemes and selected basin stratigraphies)

  • Geoscience Australia recently commenced work on a multi-year study of Australian petroleum source rocks to improve our understanding of the petroleum resource potential of Australia's sedimentary basins. The Permian source rocks of the Cooper Basin are the first to be characterised for this project. Quantifying the spatial distribution and petroleum generation potential of these source rocks is critical for understanding both the conventional and unconventional hydrocarbon prospectivity of the basin. The Cooper Basin is an upper Carboniferous-Middle Triassic intracratonic basin in northeastern South Australia and southwestern Queensland (Gravestock et al., 1998; Draper, 2002; McKellar, 2013; Carr et al., 2015; Hall et al., 2015a). The basin is Australia's premier onshore hydrocarbon producing province and is nationally significant in providing gas to the eastern Australian gas market. The basin also hosts a range of unconventional gas play types within the Permian Gidgealpa Group, including basin-centred gas and tight gas accumulations, deep dry coal gas associated with the Patchawarra and Toolachee formations, the Murteree and Roseneath shale gas plays and deep coal seam gas in the Weena Trough (e.g. Goldstein et al., 2012; Menpes et al., 2013; Greenstreet, 2015). The principal source rocks for these plays are the Permian coals and coaly shales of the Gidgealpa Group (Boreham & Hill, 1998; Deighton et al., 2003; Hall et al., 2016a). Mapping the petroleum generation potential of these source rocks is critical for understanding the hydrocarbon prospectivity of the basin contains reviews the distribution, type, quality, maturity and generation potential of the Cooper Basin source rocks. Geoscience Australia, in conjunction with the Department of State Development, South Australia and the Geological Survey of Queensland, have recently released a series of studies reviewing the distribution, type, quality, maturity and generation potential of the Cooper Basin source rocks. - A 3D basin model, characterising regional basin architecture, was constructed through the integration of existing horizons with formation tops and seismic interpretations (Hall et al., 2015a; Hall et al., 2016d). - Source rock distribution, amount and quality were reviewed through the analysis of log data and source rock geochemical data (including data acquired from new sampling), characterising source rocks across the whole basin (Hall et al., 2016a; Hall et al., 2016e). - Petroleum systems models, incorporating new Cooper Basin kinetics (Mahlstedt et al., 2015), highlight the variability in burial, thermal and hydrocarbon generation histories for each source rock across the basin (Hall et al., 2016b in prep; Hall et al., 2016f). This GIS contains all data associated with the above reports and accompanying data packages, providing important insights into the hydrocarbon prospectivity of the basin (Hall et al., 2015b; Kuske et al., 2015). The broad extent of the Cooper Basin's Permian source kitchen and its large total generation potential, highlights the basin's significance as a world class hydrocarbon province. The systematic workflow applied here demonstrates the importance of integrated geochemical and petroleum systems modelling studies as a predictive tool for understanding the petroleum resource potential of Australia's sedimentary basins.

  • Geoscience Australia (GA) has created a unique collection of 3D structural and geological models and model inputs for Australia and its near shore regions. Currently the collection contains a variety of 3D volumetric models and surfaces that were produced for specific projects at regional to continental scale. The approximately 40 regional scale models in the collection cover roughly 1/3 of the Australian continent. The models capture 3D stratigraphy and architecture, including the depth to bedrock and the locations of different major rock units, faults and geological structures. The geologic models represent the integration of geophysical surveys, seismic surveys, borehole data, field geology, and geochemical data, the majority of which will now be available through this and other RDSI collections. In their current form, the 3D models provide a valuable input to simulations of geological processes. However, the plan over time is to use the HPC capability at NCI and the large storage volumes available to dynamically integrate the various models and geological, geochemical and geophysical derivative products to then create a unified 3D model for the entire continent. Separately and then cumulatively, these models will provide an important new basis for describing and understanding Australia's geologic evolution and resource wealth. Currently there are no international open standards for the development and storage of 3D geological models, which is why they are difficult to integrate or stitch into nationally integrated data sets. The lack of consistency of the models means that each has to be transformed into formats compatible with existing HP modelling and simulation software. It is hoped that through exposing these 3D geological models into a HP collaborative environment that this will foster and accelerate the development of international standards and tools necessary for the assimilation of 3D geological models into a variety of HP programs. <b> Note: This record has been superseded by eCat 144629:</b> - <a href="https://pid.geoscience.gov.au/dataset/ga/144629">https://pid.geoscience.gov.au/dataset/ga/144629</a>

  • The National Geochemical Survey of Australia: The Geochemical Atlas of Australia was published in July 2011. Released along with this publication was a digital copy of the geochemical dataset that included basic particle size data. This dataset includes extended particle size data for NGSA samples.

  • The Petrel Sub-basin CO2 Storage Study data package includes the datasets used for the study located in the Petrel Sub-basin, Bonaparte Basin, offshore Northern Territory. The datasets supports the results of the Geoscience Australia Record 2014/11 and appendices. The study provides an evaluation of the CO2 geological storage potential of the Petrel Sub-basin and was part of the Australian government's National Low Emission Coal Initiative.